
CSE 301

Combinatorial Optimization

Minimum Spanning Tree

Last Class’s Topic

• Articulation Point

– How can we ensure that the root of the DFS tree is an

articulation point?

– What does LOW[v] mean?

– What’s the way to calculate the LOW[v] for any

vertex? How can it be done by post order traversal?

– What is the criteria for a vertex to be an articulation

point (except root)?

2

3

Problem: Laying Telephone Wire

Central office

4

Wiring: Naïve Approach

Central office

Expensive!

5

Wiring: Better Approach

Central office

Minimize the total length of wire connecting the customers

6

A Networking Problem

Problem: The vertices represent 8 regional data centers which
need to be connected with high-speed data lines. Feasibility
studies show that the links illustrated above are possible, and the
cost in millions of dollars is shown next to the link. Which links
should be constructed to enable full communication (with relays
allowed) and keep the total cost minimal.

7

Links Will Form a Spanning Tree

Cost (T) = 47 + 23 + 75 + 74 + 55 + 74 + 79

= 427

8

Minimum Spanning Trees

• Undirected, connected graph

G = (V,E)

• Weight function W: E  R

(assigning cost or length or

other values to edges)

(,)

() (,)
u v T

w T w u v


 

 Spanning tree: tree that connects all the vertices
(above?)

 Minimum spanning tree: tree that connects all
the vertices and minimizes

9

Minimum Spanning Tree (MST)

• it is a tree (i.e., it is acyclic)

• it covers all the vertices V

– contains |V| - 1 edges

• the total cost associated with tree edges is the

minimum among all possible spanning trees

• not necessarily unique

A minimum spanning tree is a subgraph of an

undirected weighted graph G, such that

10

How Can We Generate a MST?

a

c
e

d

b
2

45

9

6

4

5

5

a

c
e

d

b
2

45

9

6

4

5

5

11

Greedy Choice

We will show two ways to build a minimum

spanning tree.

• A MST can be grown from the current spanning

tree by adding the nearest vertex and the edge

connecting the nearest vertex to the MST.

(Prim's algorithm)

• A MST can be grown from a forest of spanning

trees by adding the smallest edge connecting

two spanning trees. (Kruskal's algorithm)

12

Notation

• Tree-vertices: in the tree constructed so far

• Non-tree vertices: rest of vertices

Prim’s Selection rule

• Select the minimum weight edge between a

tree-node and a non-tree node and add to the

tree

13

The Prim algorithm Main Idea

Select a vertex to be a tree-node

while (there are non-tree vertices) {

if there is no edge connecting a tree node
with a non-tree node

return “no spanning tree”

select an edge of minimum weight
between a tree node and a non-tree node

add the selected edge and its new vertex
to the tree

}

return tree

6 4

5

2

158

10
14

3

u

v

b

a

c

d

f

14

Prim’s Algorithm

• Vertex based algorithm

• Grows one tree T, one vertex at a time

15

Prim – Step 1

16

Prim – Step 2

17

Prim – Step 3

18

Prim – Step 4

19

Prim – Step 5

20

Prim – Step 6

21

Prim – Step 7 Done!!

Weight (T) = 23 + 29 + 31 + 32 + 47 + 54 + 66 = 282

22

MST-Prim(G,w,r)

01 Q  V[G] // Q – vertices out of T

02 for each u  Q

03 key[u]  

04 key[r]  0 // r is the first tree node, let r=1

05 p[r]  NIL

06 while Q   do

07 u  ExtractMin(Q) // making u part of T

08 for each v  Adj[u] do

09 if v  Q and w(u,v) < key[v] then

10 p[v]  u

11 key[v]  w(u,v)

Prim Algorithm (2)

23

• r:
– Grow the minimum spanning tree from the root vertex “r”.

• Q:
– is a priority queue, holding all vertices that are not in the tree

now.

• key[v]:
– is the minimum weight of any edge connecting v to a vertex

in the tree.

• p [v]:
– names the parent of v in the tree.

• T[v] –
– Vertex v is already included in MST if T[v]==1, otherwise, it

is not included yet.

Prim Algorithm:Variables

24

a

b

h

c d

e

fg

i

4

8 7

9

10

14
4

2

2

6

1

7

11

8

The execution of Prim's algorithm(moderate

part)

the root

vertex

V a b c d e f g h i

T 1 0 0 0 0 0 0 0 0

Key 0 - - - - - - - -

p -1 - - - - - - - -

25

a

b

h

c d

e

fg

i

4

8 7

9

10

14
4

2

2

6

1

7

11

8

The execution of Prim's algorithm(moderate

part)

the root

vertex

V a b c d e f g h i

T 1 0 0 0 0 0 0 0 0

Key 0 4 - - - - - 8 -

p -1 a - - - - - a -

26

The execution of Prim's algorithm(moderate

part)

the root

vertex

V a b c d e f g h i

T 1 1 0 0 0 0 0 0 0

Key 0 4 8 - - - - 8 -

p -1 a b - - - - a -

a

b

h

c d

e

fg

i

4

8 7

9

10

14
4

2

2

6

1

7

11

8

Important: Update Key[v] only if T[v]==0

27

The execution of Prim's algorithm(moderate

part)

the root

vertex

V a b c d e f g h i

T 1 1 1 0 0 0 0 0 0

Key 0 4 8 7 - 4 - 8 2

p -1 a b c - c - a c

a

b

h

c d

e

fg

i

4

8 7

9

10

14
4

2

2

6

1

7

11

8

28

The execution of Prim's algorithm(moderate

part)

the root

vertex

V a b c d e f g h i

T 1 1 1 0 0 0 0 0 1

Key 0 4 8 7 - 4 6 7 2

p -1 a b c - c i i c

a

b

h

c d

e

fg

i

4

8 7

9

10

14
4

2

2

6

1

7

11

8

29

The execution of Prim's algorithm(moderate

part)

the root

vertex

V a b c d e f g h i

T 1 1 1 0 0 1 0 0 1

Key 0 4 8 7 10 4 2 7 2

p -1 a b c f c f i c

a

b

h

c d

e

fg

i

4

8 7

9

10

14
4

2

2

6

1

7

11

8

30

The execution of Prim's algorithm(moderate

part)

the root

vertex

V a b c d e f g h i

T 1 1 1 0 0 1 1 0 1

Key 0 4 8 7 10 4 2 1 2

p -1 a b c f c f g c

a

b

h

c d

e

fg

i

4

8 7

9

10

14
4

2

2

6

1

7

11

8

31

The execution of Prim's algorithm(moderate

part)

the root

vertex

V a b c d e f g h i

T 1 1 1 0 0 1 1 1 1

Key 0 4 8 7 10 4 2 1 2

p -1 a b c f c f g c

a

b

h

c d

e

fg

i

4

8 7

9

10

14
4

2

2

6

1

7

11

8

32

The execution of Prim's algorithm(moderate

part)

the root

vertex

V a b c d e f g h i

T 1 1 1 1 0 1 1 1 1

Key 0 4 8 7 9 4 2 1 2

p -1 a b c d c f g c

a

b

h

c d

e

fg

i

4

8 7

9

10

14
4

2

2

6

1

7

11

8

33

The execution of Prim's algorithm(moderate

part)

the root

vertex

V a b c d e f g h i

T 1 1 1 1 1 1 1 1 1

Key 0 4 8 7 9 4 2 1 2

p -1 a b c d c f g c

a

b

h

c d

e

fg

i

4

8 7

9

10

14
4

2

2

6

1

7

11

8

34

Overall: O(E)

Decrease Key: O(lgV)

Heap: O(lgV)

O(V)

O(V)

MST-Prim(G,w,r)

01 Q  V[G] // Q – vertices out of T

02 for each u  Q

03 key[u]  

04 key[r]  0

05 p[r]  NIL

06 while Q   do

07 u  ExtractMin(Q) // making u part of T

08 for each v  Adj[u] do

09 if v  Q and w(u,v) < key[v] then

10 p[v]  u

11 key[v]  w(u,v)

Complexity: Prim Algorithm

Overall complexity: O(V)+O(V lg V+E lg V) = O(E lg V)

Overall Complexity Analysis

• O(V2)

– When we don’t use heap

– To find the minimum element, we traverse the “KEY”

array from beginning to end

– We use adjacency matrix to update KEY.

• O(ElogV)

– When min-heap is used to find the minimum element

from “KEY”.

• O(E+VlogV)

– When fibonacci heap is used to find the minimum

element from “KEY”.

35

